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ABSTRACT

Cloud computing, also known as on-demand computing, provides different kinds of services for the
users. As the name suggests, its increasing demand makes it prone to various intruders affecting the
privacy and integrity of the data stored in the cloud. To cope with this situation, intrusion detection
systems (IDS) are implemented in the cloud. An effective IDS constitutes of less time-consuming
algorithm with less space complexity and higher accuracy. To do so, the number of features are
reduced while maintaining minimal loss of information. In this paper, the authors have proposed a
model by which the features are selected on the basis of mutual information gain among correlated
features. To achieve this, they first group the features according to the correlativity. Then from each
group, the features with the highest mutual information gain in their respective groups are selected.
This led them to a reduced feature set which provides quick learning and thus produces a better IDS
that would secure the data in the cloud.
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INTRODUCTION

Cloud computing is a widespread term for the transportation of hosted services using the Internet.
Cloud computing has evolved as one of the most vital dimension of the modern software industry
by making a transition from computing-as-a-product to computing-as-a-service (Murugesan, 2011).
Instead of setting up a physical infrastructure, Cloud allows us to have the luxury of using applications,
software, platforms etc. as a service and one has to pay only for the resources he consumes (Singh
& Jangwal, 2012). Since in a Cloud Environment data arrives from different heterogeneous sources
therefore understanding the associative vulnerabilities is the foremost job to do (Grobauer, Walloschek,
& Stocker, 2011) and then, to provide a way to maintain the integrity, confidentiality and availability
of the incoming and outgoing data. Hamlen et al. (Hamlen, Kantarcioglu, Khan, & Thuraisingham,
2010) in their work have discussed the various security issues of the Cloud. IDS is one such solution
that provides data security to the Cloud Environment. Based on deployment, IDS have two models,
Host Based IDS(HIDS) and Network Based IDS(NIDS). HIDS attempts to recognize unauthorized,
abnormal behaviors on a specific device (Hu, 2010). HIDS uses both Anomaly Based and Misuse
Based Detection Techniques and plays a very compliant role in identifying, logging records and
alerting the admin if there is any security issue. Whereas NIDS completely works on Network
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traffic. It captures Ethernet Packets and scans it in real time to decide whether it is an attack or not
(Mukherjee, Heberlein, & Levitt, 1994). The number of unnecessary generated alerts in Anomaly
Based IDS which causes high false alarm can be reduced as demonstrated by Hacini et al. (Salima
Hacini, Zahia Guessoum, 2013) .

As the network traffic is huge in size so the analysis of packets in real time is too time-consuming
phenomenon, hence for better performance of IDS it is incorporated with various data mining
algorithms extensively (Yanjie, 2015). For further enhancement in the performance pre-processing
of data becomes inevitable which reduces dimensions quite significantly (Said, Stirling, Federolf,
& Barker, 2011). Feature Selection is one of the most widely used pre-processing technique which
eliminates irrelevant and homogeneous features from a given feature set (Mladeni, 2006). Another
pre-processing technique is Clustering which helps to eliminate outliers, noise and group similar kind
of objects. Objects can be either instances or features (Kryszkiewicz & Skonieczny, 2005). For the
experimental purpose the authors have used NSL-KDD dataset for training and testing purpose. In
this paper, initially authors have designed a fully connected weighted graph of features, where each
node represents a feature. Then Core Clusters are created by removing inconsistent edges. Later, the
relevant features which have high Mutual Information Values, are selected from each core in order to
get the Relevant Feature Set (RFS). Using the above mentioned methods the authors have proposed
an Anomaly Based Intrusion Detection System.

RELATED WORK

Cloud has been an inseparable part of modern day technology because of its fascinating storage and
computing capability. Therefore various conventional services such as Messaging Services, Social
Networking Services are shifting towards Cloud Platform. Shawish and Salama (Shawish & Salama,
2014) gave a overview of Cloud’s anatomy, characteristics and architecture. They also covered a
detailed comparison between Cloud Based Services and Existing Services. Though Cloud is very
flexible but it is quite vulnerable to various kinds of attacks. To overcome all these data security
issues various IDSs are required. A brief introduction to IDS was proposed by Mohamed et al. (A.
Mohamed, Idris, & Shanmugum, 2012). In their work they reviewed IDS, pointed out those issues
that appeared during implementation of IDS and the restrictions in the research field in IDS. Kumar
et al. (B. S. Kumar et al., 2001) provided an in depth description of IDS model and the various types
of intrusion in the system and their corresponding prevention techniques. Lombardi and Di Pietro
(Lombardi & Di Pietro, 2011) proved how Virtualization can be implemented to increase security
in Cloud. They proposed a novel architecture, Advanced Cloud Protection System(ACPS) that can
fruitfully audit the integrity of the Cloud Environment. Denning (Denning, 1987) developed a general
purpose IDS framework which was system as well as environment independent and consolidated the
fact that, security breaches can be identified by monitoring system’s log of unusual patterns. Kholidy
and Baiardi (Kholidy & Baiardi, 2012) outlined a framework to work out the inadequacy of IDS
model. They incorporated both Knowledge-Based and Behavior-Based techniques to improve the
overall attack handling capability. Later on, for the betterment of IDS performance in Cloud, several
data mining techniques were also introduced. Lee and Stolfo (Lee & Stolfo, 2000) suggested a model
which was based on data mining algorithms. The model used Classification, Meta-Classification,
Association and Frequent Rule to generate frequent pattern from audit log to detect anomalies. The
result displays that the model is as good as those systems which were manual knowledge approach
driven. Mohamed et al. (S. Mohamed, Mohamed, & Mokhtar, 2017) proposed an IDS model using
a hybrid approach of K-Means and Sequential Minimal Optimization (SMO) Classification. They
apply the approach on NSL-KDD dataset and the result shows that it brings down the false alarm
rate quite magnificently and achieves higher accuracy. Few Denials of Service(DoS) attacks can
bypass both the application and operating system layer which imposes serious threats. That’s why
Tao et al. (Tao, Yang, Peng, & Li, n.d.)proposed a HIDS which shows better detection rate of DoS
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intrusions. Gupta et al. (Gupta, Singhal, & Malik, 2016) developed a NIDS based on different data
mining approaches involving Linear Regression and K-Means clustering to automatically discover the
classification rules. Kumar et al. (G. Kumar, Saha, Singh, & Rai, 2018) also proposed a NIDS model
where they used snooping agents and honeypot which demonstrates how different attack sequences
affects the network performance such as throughput, network load, retransmission etc. Using NSL-
KDD dataset, a comparative analysis is done by them. Rao et al. (Rao, Damodaram, & Charyulu,
2012) further proposed Modified and Hashed K-Means approach which overcomes the drawbacks
of K-Means method. Their model is deployed on the KDD99 dataset and produces satisfactory
improvement in the efficiency of intrusion detection. A comparative study of Fuzzy C-Means(FCM)
and K-Means was done by Nadiammai and Hemalatha (Nadiammai & Hemalatha, 2012). The result
section shows that FCM outperforms K-Means in both correctness and speed criterions. Ghosh et al.
(Ghosh, Mandal, & Kumar, 2015) recommended an efficient IDS model that merged up both multi-
threaded NIDS and HIDS. The system used to capture, scan packets from network and report to the
admin. The model was good enough to handle massive data flow, scan them and produce report by
integrating both Misuse and Anomaly Detection. Since IDS works with a large set of data therefore to
further enhance the performance of the system various data pre-processing techniques are introduced,
such as Feature Selection. Feature Selection is one of the major parts in Machine Learning Domain.
Ghosh et al. (Ghosh, Debnath, Metia, & Dutta, 2014) proposed a multilevel Hybrid IDS model. They
used K-Nearest Neighbor (KNN) as binary classifier and selected relevant features from Feature Set
before classification to reduce the training time. The result shows that they got better classification
accuracy with their Hybrid Model. Ganapathy et al. (Ganapathy et al., 2013) did a survey of various
Intelligent Feature Selection and Classification Techniques in IDS. They proposed two new Intelligent
Approaches in their paper, Rule Based Attribute Selection and Rule Based Advanced Multiclass
SVM. Dreiseitl and Osl (Dreiseitl & Osl, 2009) outlined a Hybrid model combining both Wrapper
and Filter approaches to select relevant features from a large set of features. The result shows that
the model outperformed the Filter Methods. Sharmin et al. (Sharmin, Ali, Khan, & Shoyaibl, 2017)
presented an IDS model where they implemented discretization and feature selection based on
Mutual Information. They implemented their model on several datasets and the experimental results
showed better performance. An IDS model with a combination of K-means algorithm, which was
based on Cosine Similarity as distance metric and Information Gain (IG) was proposed by Dubey et
al. (Dubey, Saxena, & Shrivas, 2016). Cosine Similarity was used to cluster the features which are
highly similar and IG was used to select most useful features from each cluster. They used Naive
Bayes, KNN and CART Classifiers to obtain Classification accuracy and compared it with filter-based
feature selection technique which led them to observe improved efficiency along with substantially
reduced number of features. The above-mentioned works help the authors to build a brief idea about
Cloud, IDS, Feature Selection Techniques and they have implemented Feature Selection Technique
in their proposed model by incorporating Core Clusters and Mutual Information (MI). The authors
generate the Core Clusters based on the Mutual Information Gain values such that the Relevant
Feature Set obtained has the most diverse and non-redundant features which facilitate quick training
of classification models on the NSL-KDD dataset with improved accuracy.

PROPOSED MODEL

Technology is becoming much more sophisticated after every passing day, so does the attacker.
Therefore, to prevent all these attackers and provide data security, an efficient IDS model is the finest
option. Now, to increase the efficiency of an IDS model, time complexity and space complexity of
the training dataset are needed to be reduced. Feature Selection, is one of the ways to lessen this
complexity, which can be achieved by removing irrelevant features from the dataset. During the last
decade, the field of Feature Selection in Cloud Environment has been thoroughly inspected by the
researchers and several IDS models have been proposed accordingly. Based on the advantages and
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drawbacks of these existing models, the authors have proposed an Anomaly Based IDS model in
this paper.

In this paper, authors have used the NSL-KDD benchmark dataset for evaluation of the proposed
model. NSL-KDD dataset contains four components: “KDDTrain+”, “20%KDDTraining+",
“KDDTest+” and “KDDTest21”. “KDDTrain+” and “KDDTest+"" have been used for training and
testing purposes which involves 125793 and 22544 tuples respectively.

Authors proposed a feature selection algorithm to obtain relevant features using the concepts
of Graph theory and correlation between features. Mutual Co-Relation is a function that defines the
relationship between random variables, based on various metrics between those variables (Cominetti et
al., 2010). Authors reckon the RFS as a set of features which are highly related to most of the features
of the dataset and have the ability to efficiently constitute both the dataset class distribution and the
original dataset. The degree of association between attributes is visualized through a fully connected
weighted graph, where edges represent the pairwise correlation values between nodes. Here in the
graph each node represents a feature and unlike most of the existing wrapper-based feature selection
algorithms, authors have proposed a method that uses Filter-Based Feature selection.

Authors’ algorithm consists of two phases. First phase is called Core Cluster Generation Phase,
where the Co-Relation between features is calculated in order to find out how closely a feature is
related with others and to group them into several connected components known as Core Clusters,
which are derived from the fully connected graph G(V,E). RFS selection is the second phase where
each core is analyzed and all the features in that core are assigned with Mutual Information(MI) values
based on a class label. Then, the algorithm extracts the most diverse and non-redundant features in
order to maintain the diversity of the RFS. Figure 1 sketches all the steps of the proposed IDS Model.

Core Cluster Generation

In Core Cluster generation authors calculate the Pearson-Correlation Coefficient (PCC) of all pairs
of features (Peng, Long, & Ding, 2005). Usually a feature set is considered to be good if it contains
features with high correlation to the class and there is low redundancy amongst them. In their approach
the authors have emphasized on the correlation values of the attributes to determine how close they
are to each other. The value means two things, firstly, highly correlated features tend to lie in the

Figure 1. Flowchart of the proposed model
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same Core Cluster and secondly, features with relatively less correlation will certainly belongs to
different Core Clusters.

In authors’ proposed algorithm Effectiveness of Relationship (EOR) between two features is
decided on the magnitude of Pearson value. The formula for Pearson Correlation is given below,

o= Z(mi—a?)(yi—gj)
V=le 7 (0~

Where X and Y are two features and V x, € X and V y, € Y are the dimensions of the features.
The score is calculated for the pair of X and Y using equation 2 is given below,

|p| ifX=Y

pee (X’ Y) B Ootherwise

2

Successively for each pair of features, the correlation values are found out and the graph is
converted into a completely weighted graph. Thereafter, authors obtain a threshold value of PCC -
Thresh_PCC, which is used to remove all those edges which have less PCC values than that of the
threshold in order to avoid ineffective relationships.

Iteratively following this, several separate connected components are created, known as Core
Clusters where in each core there reside features that are highly correlated.

In a nutshell, the algorithm for Core Cluster generation is written in Algorithm 1,

Algorithm 1: Core Cluster Generation

Input: Conditional attributes P represented as Vertex in fully connected graph G(V,E)
Output: Several connected components named Core Clusters C(C1,C2,..,Cn) originated from
graph G(V,E)

1: Take PCC = matrix[ IPI ][ IPI ], indexed by X, Y € P
2:forall X, YePdo
3:if X # Y then
4: Compute PCC (X, Y) //using equations (1) and (2) //
5: W(X,Y) = EOR(PCC(X,Y)) //Weight of edge (X,Y)//
6: end if
7: end for
8: forall X,)Y ¢ P do
9: if EOR(PCC(X,Y)) < Thresh_PCC value then
10: W(X,Y)=0 (Remove that edge (X,Y))
11. endif
12:end for

Relevant Feature Set (RFS) Generation

This phase processes the Cores produced by the Core Cluster Generation Algorithm in order to obtain
the RFS. Authors select each Core and analyze all the features inside it very closely. Since a core
may consist of one or more than one features, therefore to select the most useful one, authors have
used Mutual Information (MI) criteria. Here MI values are calculated as Mlinfo(f,cl), where f is a
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feature and cl is the corresponding class. MI evaluates how much information presence or absence
of a feature f, contributes towards achieving the correct classification decision on cl.

In the proposed model, all the features of a particular Core have been sorted in a decreasing manner
based on their MI values. This serves two purposes, firstly, the feature at the top with the maximum
MI value classifies each record better than the others and secondly, feature having the least MI value
hardly has any vital role to play in correct classification. After analyzing each and every Core the
top features from each core is extracted and added to the Feature Set(FS). Here a scenario may occur
where a Core may contain only one feature and therefore irrespective of the MI value of the feature
it will be extracted and added to the FS. Henceforth, to make our proposed FS relevant, a filtration
process is applied. Authors obtain a threshold value of MI, named Thresh_MI. Thresh_MI value
helps to remove all those features from FS whose MI values are less than the threshold. Following
this, it can create an RFS which contains only the relevant and useful features that has the maximum
contribution to make correct classification decision.

The overall algorithm of the proposed model is given below in Algorithm 2,

Algorithm 2: Algorithm of the Proposed Model

Input: Training Dataset.
Output: Relevant Feature Set (RFS).

Construct a fully connected graph with features as nodes.
For every pair of nodes assign the pairwise correlation values as weights.
For all edges in the graph G(V, E)
Traverse an edge E,
If the co-relation value of the edge E, is less than the given Threshold value then,
remove that edge
End if
Select a new edge(i++)
Consider each connected component as Core derived from the fully connected graph.
. For each Core sort all the features based on their Mutual Information Score in a decreasing order.
. Select the top feature from each core and add it to the FS.
. Filtration is done by removing those features from FS whose MI value is lower than the given
Threshold value and the RFS is found.

S A O e

— e \O
N = O

Figure 2 represents all the steps that are required to generate the RFS.

Execution of the proposed model is presented here with the help of an example.

Initially, F (set of features) = {f1,f2,f3,....,f6} which consist of six features. FS = { ® }, C(Core
Clusters)= { ® }, RFS={ ® } and all the six features are represented as nodes in a fully connected
weighted graph G(V,E), where the weights represents the correlation between two features.

Figure 3 represents the step of generating Core Clusters from the fully connected weighted
graph G(V,E).

At first the graph G(V,E) is fed to the Core Cluster Generation Algorithm. Now the algorithm
will iteratively remove edges from the graph G where the weight is less than the given Thresh_PCC
value. Assume after the algorithm terminates there are three connected components or Core Clusters
C1, C2 and C3 respectively where C1= {f1, f5, f6}, C2= {f2, f4} and C3= {f3}. Thereafter the output
of Algorithm 1 is fed to the next step, RFS generation. Here authors calculate the Thresh_MI and MI
values for all features belong to each and every Core Cluster. After that sort those in decreasing order
based on MI values. Assume for C1 itis {f1>f6>f5}, C2= {f2>f4} and C3= {f3}. Top feature from
each Core is extracted i.e. f1,f2,f3 and added to the FS. Finally filtration is done on FS by removing
features whose MI value is less than the Thresh_MI and assume here 3 is removed and the final
RFS which consist of {f1,f2}.
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Figure 2. Flowchart of RFS generation
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Figure 3. Creation of core clusters from fully connected weighted graph

The proposed model involves the creation of a RFS and later it is used for classification and
the results are stored. Thereafter Logistic Regression, Random Forest and AdaBoost classifiers are
applied on the datasets for classification purpose and the results are stored in a tabular form. Results
obtained from these classifiers are compared with the proposed model’s outcome and it shows that
the proposed model yields far better classification accuracy than these classifiers. The algorithm
distinctly improves the efficiency of IDS by minimizing the total number of features to be considered
while stamping a record as normal or attack.

RESULT AND ANALYSIS

In this paper the authors have presented how the number of features required to train an IDS can
be greatly reduced, bringing down the cost and time of learning by a significant margin. Efficient
feature selection is a crucial stage before training any machine learning model and more so, when
Cloud security is the concern.

They have applied their feature selection model on the NSL-KDD-Train+ dataset and found that
the number of selected features was only 13 which is significantly less than the original number of
features in the dataset which stands at 41.

First, the authors have formed Cores from the highly correlated features and have plotted the
correlativity between the features, as given in Figure 4.

Then the authors have used these selected features to train some popular classifier models and
compared the accuracy score of the classifier when tested on the NSL-KDD-Test+ against the accuracy
score produced by the same classifier model when trained with the complete feature set (Tables 1
and 2). The training time of the models was found in a Jupyter Notebook using (Anaconda) Python
3.5.2 on a 6GB machine running Ubuntu 16.04.

The reduced feature set which is produced by the proposed algorithm is used to train three
popular classification algorithms, namely - Logistic Regression, Random Forest and AdaBoost
on the NSL-KDD dataset for intrusion detection. The time required for training the models and
the accuracy achieved by the models on the test dataset is recorded. To measure the comparative
performance, the aforementioned models are again trained with the complete feature set present in
the NSL-KDD dataset and as before, the training time and classification accuracy is recorded. It is
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Figure 4. Correlativity of the features
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Table 1. Confusion matrix for logistic regression trained on complete feature set (trained by KDDTrain+)

Attack Normal
Attack 7910 4923
Normal 635 9076

Table 2. Confusion matrix for logistic regression trained on reduced feature set (trained by KDDTrain+)

Attack Normal
Attack 9104 3729
Normal 747 8964

thus clearly observed that the training time for the classifier algorithms is always less while training
on the reduced feature set (Figures 5 and 6). At the same time, when the classifier algorithms are
trained on the reduced feature set, they mostly achieve better classification accuracy as compared to
when they are trained on the complete feature set. Further, memory consumption is decreased due
to reduced number of features in the training dataset.

The above tabulated observations (Table 3) lead the authors to claim that the proposed algorithm
helps in reducing the time taken and the memory required to train the classifier models while
maintaining, or improving, the accuracy of classification for the models.

CONCLUSION

From the results and analysis presented by the authors in this paper, it is very easy to conclude that the
proposed feature selection model clearly outperforms the scenario of training the classifier algorithms
with complete feature set on the parameters - speed and accuracy. Such performance is highly desirable
in a Cloud based IDS where a small delay in learning and hence, identifying malicious intrusions
can lead to catastrophic events for organizations or individuals. The proposed model in this paper
displays a novel utilization of feature correlation. It establishes that it is possible to greatly reduce
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Figure 5. Comparison of different Classifiers (trained using complete vs reduced train set)
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Figure 6. Comparison of training time for different classifiers
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the feature set on the basis of feature correlation in the NSL-KDD dataset, without loss in accuracy
and at the same time bringing down the training time of the classifier. The experimental results also
depicts that the proposed algorithm is fit for being a proficient IDS in the Cloud Environment.
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